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Abstract—In this paper the domain substructuring approach
is adapted to the nonlinear transient eddy current problem such
that the linear model parts are treated more efficiently. A matrix
decomposition of the linear subproblem is executed on before
hand and its factorization is used through out the simulation.
For a general 3D problem these non-sparse factors are replaced
by sparse approximations in order to increase the efficiency of
the solution process. Numerical results of a test example validate
this approach.

I. INTRODUCTION

The space-discretization of a magnetoquasistatic field prob-
lem yields a nonlinear differential-algebraic system, [1]. Im-
plicit time-integration is inevitable and thus large linear sys-
tems must be solved in every Newton-Raphson iteration.
Efficient solvers for linear systems have a complexity in the
order of the degrees of freedom. Further improvements require
parallelization and a reduction of the number of unknowns. To
this end, we propose a substructuring method based on Schur
complements, [2]. This is especially efficient for the curl-curl
equation because large subdomains are linear (e.g. air) and
furthermore those domains are described by a static system.

Here the substructuring procedure isolates the linear equa-
tions and solves them only once. This yields an (sparse
approximate) factorization. In either case, this knowledge is
used during the time-integration.

In this paper we discuss methods for the efficient compu-
tation of the Schur complement, the matrix-vector multiplica-
tions and suitable preconditioners for the iterative method, e.g.
by using sparse approximations of the inverse, [3].

II. PROBLEM FORMULATION

Let us consider a nonlinear magnetoquasistatic problem, e.g.
the transformer, Fig. 1. The excitation within such a model is
given by a source current, which is imposed in a conductor
region. Typically, this region is a coil consisting of thin strands,
such that no local eddy currents are present. For such a
configuration the space-discrete MQS-problem, obtained from
edge elements, can be decomposed as follows

Mȧκ +Kκ(aκ)aκ +KΓa0 = 0, (1a)

(a) Iron core (b) Copper coils (stranded conductors)

Fig. 1. Transformer model: iron core (blue) exhibits eddy currents and a
nonlinear permeability. The coils (red) are modeled linearly without eddy
currents (the strands are below skin-depth). The surrounding air (white) is
linear and non-conductive.

K>Γaκ +K0a0 = X0ı. (1b)

The conductivity matrix M models the eddy currents. The de-
grees of freedom (DoFs) of the line-integrated vector potential
are split into variables that are directly affected by eddy cur-
rents aκ and the rest a0. The curl-curl matrix is decomposed
accordingly into a nonlinear part kκ := Kκ(aκ)aκ, which
models magnetic saturation, and a linear part K0. We will
assume K0 to be gauged, e.g., by adding a grad-div regu-
larization [4], such that K0 is positive definite. This gauging
yields a matrix, which corresponds to a vector Laplacian. Both
operators are coupled by at the interface matrix KΓ.

Before we discuss the source term, we equip system (1a–1b)
with a coupling equation (for the electric network coupling):

X>0 ȧ0 +R0ı = v. (1c)

Matrix R0 describes the DC resistances of the conductors.
The circuit coupling matrix X0 distributes lumped currents.
Each column corresponds to a conductor (e.g. coil), which is
contacted externally. The structure in (1) assumes that these
conductors do not exhibit eddy currents and are made of linear
materials.

Now, the elimination of a0 yields the Schur system

Mȧκ +
(
Kκ(aκ)−KΓK

−1
0 K>Γ

)
aκ = Xκı, (2a)



11. NUMERICAL TECHNIQUES 2

X>κȧκ + L0ı̇+R0ı = v (2b)

with the new coupling matrix and lumped inductance matrix:

Xκ := −KΓK
−1
0 X0 and L0 := X>0K

−1
0 X0. (3)

The matrix Xκ maps the excitations into the nonlinear, eddy
current domain and L0 describes the linear magnetic coupling
in the eddy current-free domain.

In this formulation the evaluation of the vector potential a0

in the inner part of the eliminated subdomain is never nec-
essary: neither for the time-stepping procedure (that requires
only initial values for the differential components aκ), nor for
the evaluation of the current/voltage relation (2b). Thus the
common forward/backward substitutions known from domain
decomposition can be avoided. This is of course at the price
of the ’denser’ Schur-complement matrix in (2).

III. ALGORITHM AND COMPLEXITY

Time-discretization of (2) yields a nonlinear symmetric
problem, that is solved by Newton-Raphson. The resulting
linear system has the benefit of an improved (effective) condi-
tion number compared to (1). The spread in the eigenvalues is
reduced, because we have removed an essential material jump
in the problem, [5]. Furthermore the number of unknowns is
reduced. This promises better convergence properties when us-
ing an iterative solver, e.g. preconditioned conjugate gradients
(PCG), [6], in the Newton-Raphson iteration.

Now, the matrix KΓK
−1
0 K>Γ must be solved repeatedly for

given right-hand-sides. Typically a LU-decomposition returns
sparse factors only for 2D problems, but a decomposition of
the curl-curl matrix for a 3D problem will yield rather dense
factors. This will increase the computational costs.

Assuming the number of DoFs along one spatial direction
is O(n), the DoFs in the 3D model scales with O(n3). An
optimal multigrid solver returns a solution in linear computa-
tional time (O(n3)). The number of DoFs at any surface scales
with O(n2). Hence a matrix representation of an operator on
a surface contains O(n4) entries (full matrix). Asymptotically,
the application of KΓK

−1
0 K>Γ would dominate the computa-

tional cost and would make the method worse than a standard
multigrid technique. If a standard LU-factorization for K−1

0 is
applied (and computed in a pre-processing step), already the
forward/backward substitution will have the same complexity
O(n4). But applying sparse approximations for this inverse
(factorization) can reduce the complexity considerably, e.g.
hierarchical matrix techniques, as far as O(n2 log n2), [7]
which is clearly below O(n3).

IV. NUMERICAL TEST

We simulated the transformer model depicted in Fig. 1.
It was discretized by the finite integration technique using
139,995 DoFs. For all numerical tests the PCG method was
used with Jacobi preconditioner and the same tolerance 1e−4.

The convergence study of PCG is shown in Fig. 2 for
different settings: a) original formulation (1) without gauging
(red line), b) grad-div gauging [4] (green); c) Schur (2) based
on grad-div gauging (blue) d) Schur (2) based on grad-div
gauging with reduced fill-ins (identical to blue line).
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Fig. 2. Convergence plot of PCG for the original formulation with (green)
and without gauging (red) and for the gauged Schur system (2) (blue).

If no gauge is applied, a linear systems stemming from (1) is
solved in 4s (red, over 100 iterations). Gauging adds nonzeros
and increases the spread of the eigenvalues, thus PCG needs
about 10s to solve one system (green).

Solving the smaller system (2) requires significantly less
iterations (11, blue). But the cost per iteration is higher due
to rather dense factors such that it takes 4s, i.e., as long as for
the original system. Reducing additionally the number of fill-
ins in the Schur complement, while keeping the same level of
accuracy, the solution time was less than 2s (still 11 iterations).
This underlines the importance of the reduction of fill-ins.

V. CONCLUSIONS AND OUTLOOK

We have shown that domain substructuring applied to the
transient eddy current problem reduces PCG iterations. The
costs of each PCG iteration depend on the sparsity of the fac-
torization of the (linear) subproblems. The numerical example
have illustrated that a sparse factorization speeds up the solve
by a factor of two. The upcoming paper will discuss further
examples and techniques.
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